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Abstract. The paper presentsa wearablesensorysystem aimed at tracking of motion
parametersandestimationof kinematicdataof thewearerfor usein controllingactivelower-
limb ortho-prostheses.Thesensorysystemcomprisesinertial andmagneticmeasurementunits
(IMUs) attachedto bodysegmentsandsensorizedinsolesworn insidesneakershoes.Through
sensoryfusion, the IMUs datais usedto produceestimatesof segmentorientations,while the
insolesprovideinformationon verticalgroundreactionforceamplitudeanddistribution. The
paperoutlinestheprinciplesof thealgorithmsandshowtheevaluationof them.Algorithmsuse
bothreferenceandwearablesensorydatato extractinformationaboutthesubject’skinematics,
movementtype andphaseand track selectedbiomechanicalstability descriptors.The paper
discussespreliminaryexperimentalresultsof theproposedalgorithms.
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1. Introduction

Loss of a lower-limb can be a greatobstaclein the
life of personsfollowing lower-limb amputation. It
may affect the person’sgeneralhealth. Amputation
canbeperformedatdifferentlevels,suchasfoot level,
kneelevel or at the level of the thigh. Above-knee
amputationis usuallythemoststressful(Hagbergand
Brånemark,2001) of amputationtypesas it greatly
diminishesthe person’snatural area of movement.
Personsfollowing amputationtendto consumemore
metabolicenergy than healthy personsand require
greater level of mental effort to move their body
without falling (Miller et al., 2001). The goal of the
EU-fundedCYBERLEGsproject (The CYBERnetic
LowEr-Limb CoGnitive Orto-prosthesis)is aimedat
developmentof a robotic, wearableortho-prosthesis.
Sincecurrentlyavailablepassiveandactiveprostheses
do not greatly diminish effort and energyconsump-
tion, the aim of the project is the developmentof a
cognitiveroboticsystemfor personsfollowing above-
kneeamputationthat enablesthemto performprevi-
ouslydemandingmovementmaneuverswith minimal
mentaleffortandenergyconsumption.Themaneuvers
of interestaresteady-stateground-levelwalking,stair
ascentanddescentaswell assit-to-standandstand-to-
sit movement.

Laboratoryof Roboticsat theFacultyof Electrical
Engineering,University of Ljubljana is involved in
developmentof a wearablesensorysystem,sensory
fusion,cognitivedecisionmakingandintentiondetec-
tion algorithmsalongsidetrackingof stability param-
etersduringmovements.

In laboratoryenvironment,systemsusedfor as-
sessmentof kinematicsparametersareusuallybased
onanopticalprinciplewith theuseof passive(Vicon)
or active markers(Optotrak) (Kirtley, 2006). Such
laboratorysystemshavehigh accuracybut they are
large, expensive,stationary,and have limited mea-
surementspace. Recently, the use of inertial and
magneticsensorfor assessmentof humankinematics
parametershasbecomea commonpractice(Bonato,
2003; Roetenberget al., 2009). Inertial sensorsare
lessaccuratecomparedto laboratorysystems,however
they are lighter, cheaper,wearableand do not alter
naturalmovementpatterns.As suchtheycanalsobe
usedoutsidethelaboratoryenvironment.

Fusionof sensorysignalsfrom inertial andmag-
netic sensorsplaced on body segmentsis used to
assessthe segments’orientation. Kalmanfiltering is
a commonapproachfor this task, whereorientation
is estimatedby integratingangularvelocity (Sabatini,
2006; Yun and Bachmann,2006). Due to the drift
of integratedgyroscopeoutput and temperaturede-
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pendency, the orientation error tends to grow with
time. To compensate for the error of integration,
the integrated orientation estimate is fused with the
orientation estimate obtained from accelerometer and
magnetometer data.

The sensory system, via sensory fusion algorithms,
should provide the cognitive system with information
on the user’s kinematic parameters while the cognitive
system provides information about the user’s current
movement state and intention to the controller. Ad-
ditionally, tracking of stability parameters should be
incorporated into the cognitive system, in order to
provide a basis for decisions on reactive movement
when a sudden loss of balance is imminent.

This paper is divided into four parts that comprise
the cognitive system of CYBERLEGs and build upon
each other. The first section describes the wearable
hardware used for extracting information on user
movement and intention as well as body kinematic
parameters. The second part describes the princi-
ples upon which the sensory fusion and extraction
of kinematic parameters are based and also provides
some preliminary evaluation data of the proposed
algorithms. Based on sensory data, part three presents
a cognitive machine that identifies current movement
maneuver that user is performing and classifies phases
within that particular movement type. The system
provides data on steady states as well as transitions
between these states. Furthermore, part four describes
tracking of independent particular stability descriptive
parameters are tracked based on a statistical anthro-
pometric model, estimated kinematic parameters and
directly measured sensory information.

2. Wearable sensory system hardware

The CYBERLEGs sensory and feedback system
uses commercially-available components and custom-
made sensing components, developed within the CY-
BERLEGs Consortium (see schematic shown in Fig-
ure 1). As the figure shows, the system comprises sev-
eral wearable sensors - sensorized insoles, pressure-
sensitive pads to measure human-robot interaction,
inertial measurement units (IMUs), vibrotactile mod-
ules for afferent feedback and sensors for detection
of amputee psychophysiological stress status - in ad-
dition to sensors for controlling the actuation system
and measurement of the joint positions of the ortho-
prosthesis. Communication with the main controller
employs both UDP and SPI protocols, while sensory
fusion runs on a separate real-time OS (xPC Target)
based machine. The inertial measurement units are
used for assessing the orientation of human body seg-
ments, and shoe insoles for measuring ground reaction
forces. The sensory data acquisition unit consists of
two wireless receiver units (RU) for fetching data via
802.15.4 (ZigBee) and Bluetooth protocols. Transfer
of acquired data employs Ethernet UDP communi-

cation to the controller that runs the tools for data
processing and sensory fusion algorithms.

Figure 1.CYBERLEGs wearable sensory system: sensors
and data acquisition unit

2.1. Sensorized insoles
The CYBERLEGs pressure-sensitive insoles, devel-
oped at Scuola Superiore Sant’ Anna, Pisa, Italy
(De Rossi et al., 2011), comprise an array of 64
pressure sensors and fit into normal sneaker shoes.
Each cell has a working range from 0 to 70 N. They
are wireless, run on battery power and output vertical
ground reaction force estimate as well as a distribution
of this force along the sole (Center of Pressure).

2.2. Inertial measurement system
An inertial and magnetic measurement unit (Figure
2) consists of three sensors which measure 3D vec-
tors of angular velocity (range±500◦/s), translational
acceleration (range±2 G), and magnetic field (range
±1.3 Ga) and is equipped with an onboard 8-bit pro-
cessor (Beravs et al., 2011). The size of the IMU
without the battery is 30×20×5 mm. For measuring
kinematic parameters of the human body, seven IMUs
are used. Each of the IMU is placed on an individual
segment of lower extremities: feet, shanks, thighs,
and trunk. Placement of the IMU on the segment is
determined with initial evaluation of IMU orientation
during standstill.

3. Assessment of kinematic parameters

Kinematics of the human body can be estimated using
data provided by wearable sensors. Based on sensory
signals from seven IMUs, we have developed an algo-
rithm for kinematics parameters assessment by means
of sensory data fusion.

A common approach for determining segment ori-
entations is the use of an Unscented Kalman filter
applied to the measurement data (Beravs et al., 2011).
The approach is based on individual segment’s angu-
lar velocity integration during motion and orientation
correction with respect to gravity and the Earth’s mag-
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Figure 2.Inertial measurement unit with a battery.

netic field. The accelerometer is used as an inclinome-
ter by comparing measured acceleration vector to the
vector of gravity in order to determine the intermediate
angle of inclination. For successful implementation of
the magnetometer into the algorithm it is assumed that
magnetic field in space is locally constant (constant
direction and length) and non-parallel to gravity. Con-
sidering this assumption, the angle of rotation around
the gravity vector can be calculated by comparing the
measured magnetic vector with the initial vector of
the magnetic field. The approach often results in a
drift during long-term dynamical movement due to
gyroscope drift, errors introduced by separation of
gravity and dynamic acceleration, and changes of the
magnetic field. To compensate for this effect, resetting
during standstill was introduced. In order to further
reduce the drift without the need for standstill, a
kinematic model of the human body was incorporated
into the sensory fusion algorithm.

To determine joint angles that describe relative po-
sition between segments, an error quaternion between
two adjacent segments is calculated and presented
with rotation angles as shown in Figure 3.

Other parameters which can also be obtained with
the presented wearable system (e.g. step duration, gait
frequency, acceleration of centers of mass, ...) exceed
the scope of this paper.

4. Movement classification and phase de-
tection

In literature, authors presented segmentations for dif-
ferent movement types: ground-level walking (Whit-
tle, 1996), walking over obstacles (Li et al., 2012) ,
stair climbing (McFadyen and Winter, 1988), sit-to-
stand and stand-to-sit (Kralj et al., 1990). A threshold-
based decision tree was developed for performing
recognition of ground level walking with gait phases,
stair ascent and descent and stand-to-sit and sit-to-
stand maneuver based on wearable sensory data. In

Figure 3.Calculation of body kinematic parameters

Figure 4 a conceptual state diagram with all the pos-
sible transitions between detected maneuvers and gait
phases is presented.
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Figure 4.A conceptual diagram of the detected set of
movement types and transitions; iW - initiation
of walking; iSA - initiation of stair ascent; iSD -
initiation of stair descent; tW - termination of
walking; tSA - termination of stair ascent; tSD -
termination of stair descent

The decision tree was tuned off-line to perform
movement identification and intention detection as
well as phase segmentation within recognized maneu-
vers. The algorithm was tested with healthy subjects
online, in real-time. Results show that while this
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approach is successful for recognition of movement
types, it is sensitive to unexpected behavior. For this
reason, a more robust, state-machine architecture for
the algorithm was built. This approach allows transi-
tions between states to occur only when they satisfy a
number of specific conditions. The transition thresh-
old values may be defined manually while specific
conditions and the general order of magnitude of these
values remain unchanged. On the other hand, this
makes the classification and segmentation machine
less tailored to a specific wearer of the sensory system.

As an alternative, a fuzzy logic approach was
utilized. The approach resulted in creating soft (fuzzy)
transition rules for the state-machine with the use
of fuzzy clustering method. The method outputs
probability with which the fused sensory data best fits
a given signal cluster (Gagula-Palalic, 2008). The cen-
ters of each cluster were taught before-hand, offline.
Probability is calculated as the distance to each of the
centers.

5. Tracking of balance descriptors

The human body is a multi-body system, supported
by only one or two relatively small segments, which
results in a fairly small supportive polygon. This
polygon is a convex hull that includes all points
of contact between the body and the outside world.
Human posture is defined by reciprocal relationships
of human-body segments and their orientation with
respect to the Earth’s inertial frame. One of the goals
of the CYBERLEGs project is to track estimates of
particular balance descriptors using only data derived
from wearable sensors.

Two balance descriptors were chosen for tracking:
the whole body Center Of Mass (COM) and the Zero-
Moment Point (ZMP - a point on the ground where
the horizontal components of the resultant moment are
equal to zero).

The COM is determined from kinematic param-
eters of the user and warrants knowledge of mass
and inertial parameters of particular segments of the
human body. Thus, the segmental COM positions
are estimated according to segment orientations and
statistically-determined human body anthropometrical
data (De Leva, 1996). The ZMP can either be mea-
sured (when the resultant horizontal moment is bal-
anced) or estimated from a combination of kinematic
and inertial data. The derivation of ZMP through
forward kinematics is based on moment equilibrium
in the ground plane, following equation (1) (Dekker,
2009):

MR = [00MRz]
T =

n

∑
i=1

( ~rCOM,i × (mi ·~ai)+

Ii · ω̇i + ωi × (Ii ·ωi))−
~rCOM ×mbody·~g+

(
n

∑
i=1

mi ·~ai −mbody·~g)×~rZMP.

(1)

The indexi denotes thei-th segment,m mass,ω and
ω̇i angular velocity and acceleration, respectively.Ii
is the segments inertia matrix, while~rCOM,i and~rZMP

denote vectors of segment COMs (former) and ZMP
(latter).

The proposed algorithms build upon assumptions,
which introduce some limitations to the accuracy of
the estimates. They assume that all body segments are
non-compliant, the ground is rigid and level and no
sliding or slipping occurs. Furthermore, all anthropo-
metric and kinematic information is assumed known
(Dekker, 2009).

6. Experimental evaluation

Experimental data was collected in experiments with
multiple subjects performing walking, stair climbing
and sit-to-stand maneuvers. Using NDI Optotrak 3D
optical position measurement system, spatial positions
of active infrared markers, attached to bony landmarks
of the subject’s body, were measured. Linear and
angular velocities as well as accelerations were either
derived from 3D position data (only dynamic accelera-
tion) or directly measured by the inertial measurement
units, placed on the subject’s body segments. In the
latter case, each IMU was equipped with three IR
markers, relaying information on placement position
and orientation to the investigators. During the walk-
ing maneuver, data from sensorized insoles was col-
lected in order to determine foot-ground contact times
and estimates of vertical ground reaction force and
center of pressure. Two IR markers were positioned at
the side of the shoe soles to estimate (with knowledge
of the sole outline with respect to these markers) the
contact hull of support for each foot. Sensor placement
is shown in Figure 5. Experimental validation of the
wearable system for measuring movement kinematics
of healthy subjects was performed by comparison of
orientations obtained from IMUs with data acquired
by the Optotrak system.

6.1. Detection of walking phases
Initial testing and validation was performed for the
walking maneuver. Figure 6 shows results of online
recognition for the walking maneuver with gait phases
using a hard-coded state-machine and fuzzy clustering
method. Results of preliminary comparison show
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Figure 5.Experimental evaluation: reference system
(Optotrak Certus Motion Capture System and
Force plates) and wearable sensors (IMUs and
Insoles)

Figure 6.Results of maneuvers and gait phases detection
comparing two different approaches (above:
state machine, bellow: fuzzy logic clustering)

more robust performance of the state-machine algo-
rithm, while fuzzy logic offers easier adjustments to
an individual subject. Currently, the fuzzy clustering
method requires the clusters to be defined offline,
based on a learning set, before applying them to the
classification and segmentation engine.

6.2. Motion kinematics tracking in standing-up
Experimental validation of the wearable system for
measuring movement kinematics of healthy subjects
was performed by comparison of joint angles obtained
from IMU with data acquired by a reference measure-
ment system (Optotrak). Joint angles were derived
from measured positions of markers placed on bony
landmarks of the subject’s body. Five IMUs were
placed on body segments (shanks, thighs and trunk)
along with IR active markers for position reference.
Joint angles were obtained with decomposition of
error quaternions between two segments. The algo-
rithm was evaluated with experiments in standing-
up and sitting-down of a healthy subject. Exper-
imental protocol involved several repetitions of sit-
to-stand and stand-to-sit motion during three-minute-
long measurements. Typical joint angle trajectories
(knee and hip angles and trunk inclination) derived
from Optotrak- or IMU-based data, respectively, are
presented in Figure 7.

Figure 7.Typical knee and hip angles and trunk inclination
during standing up obtained with reference
system (OPTO) and wearable system (IMU).
Timest1 andt2 denote the start and finish of
standing up, respectively

Statistical comparison of joint angles (knee and hip
joint angle and trunk inclination angle) is presented
in Figure 8 with boxplots of absolute error between
angles obtained from the Optotrak system and those
from the wearable system. Results show that the
median value of absolute error of the wearable system
is below 2◦ and is as such appropriate for measuring
kinematics parameters.

6.3. Balance descriptors
For the stair climbing maneuver, the trajectories of the
ZMP point, measured by the reference force sensors
implemented in ground and stairs, were compared to
the ZMP trajectory estimated from position-derived
data. Seven healthy subjects performed multiple bare-
foot walks up the stairs. Results showed a combined
RMSE error of 54 mm, thus proving the concept of
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Figure 8.Boxplot of absolute error between joint angles
calculated from IMUs data and angles calculated
from Optotrak data

ZMP assessment by a kinematics-based approach for
a human subject in motion (Ambrozic, 2012).

An algorithm that combines data provided from
position sensors with data, collected by wearable
sensors, was used to yield sample-based balance de-
scriptor estimates with respect to a desired coordinate
frame origin. Estimates of COM and ZMP trajectories
from combined sensory data for a 4-step walking
maneuver are shown in Figure 9.

Figure 9.ZMP and COM trajectory w.r.t. feet support for a
4-step walking maneuver with quiet standing at
the beginning and end of walk

Preliminary results indicate that balance descrip-
tors estimated from a combination of sensors are
equally descriptive as those derived solely from posi-
tion data. In addition, by combining subject kinemat-
ics with data from the insoles, we are able to track the
instantaneous base of support. As a result, the ZMP
stability margin (minimal distance from the edge of
the support polygon) can be assessed on-line. Figure
10 shows one slow walk with 4 steps, starting and
ending while the subject is in quiet standing. Stability
is quantified as the distance from the closest point in
which the resultant moment on the body, acting in the
plane of the ground support, can be balanced by a
resultant force applied to the ground by the subject.
Depending on whether this point lies within the base
of support or outside of it, the point is termed ZMP
or Fictitious ZMP, respectively. The distance from
the closest edge of the support polygon is positive
when the resultant force should be applied outside
and negative when inside the instantaneous base of
support. Preliminary investigation suggests that most

Figure 10.Assessed stability in terms of minimal distance
of the ZMP from the edge of support polygon.
Negative values denote situations where the
ZMP point lies within the base of support while
positive values convey the distance of the
FZMP (a point outside the support polygon) to
the edge of the base of support. The bottom
lines show contact times of the left and right
foot, respectively. Grey patches over the entire
figure mark double support instances, while
white space marks single stance

of the unbalanced moment (tipping about the edge of
support) is present at times of beginning and end of
single support - that is right after toe off and right
before heel strike of the swing leg. This conforms
with the idea that humans take advantage of physical
dynamics of the body during steady-state gait with
regard to swing foot placement (Matthis and Fajen,
2013) and react to unbalanced moment by moving
parts of the body that are not in contact with the
environment and thus maximize stability (Robert et al.,
2009).

7. Conclusions

This paper presents the sensory system for robotic
ortho-prosthesis which is based on wearable sensors
incorporating the inertial measurements units and sen-
sorized insoles worn by the subject. Data from the
wearable system is fused by sensory fusion algorithms
to assess the human body motion kinematics, identify
motion maneuver and its phases, and track stability
descriptors.

The algorithm for motion kinematics assessment
is based on Extended Kalman filtering and fuses the
integral of angular velocity with the estimate of linear
acceleration, based on kinematic model of the human
body. Experimental validation of the algorithm was
accomplished on healthy subject performing sit-to-
stand maneuver. Comparison of joint angles, as-
sessed by wearable system, with those obtained from
reference position measurements results in absolute
error median smaller than 2◦. The results confirm
the suitability of wearable system for joint angles
assessment in dynamic situations. Additionally, per-
formance on detection of maneuvers and gait phases
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was tested online, exploiting both measured and es-
timated data. Two different algorithms were devel-
oped and evaluated. A decision tree with threshold
based rules generally performs more robust detection,
while the fuzzy clustering method is more convenient
when the acquisition of training data sets is possible.
Furthermore, fuzzy clusters can be tailored to each
subject. Making use of a statistical anthropometric
model, segmental centers of mass and the estimated
ZMP position, the support polygon was assessed and
the ZMP stability margin quantified for ground level
walking. Results suggest that most of the unbalanced
moment (tipping over the edge of support) is present at
instants of beginning and end of single support phase.
This suggests that humans take advantage of physical
dynamics of the body during steady-state gait, thus
exhibiting globally stable gait.

In future developments, the presented contribu-
tions will be combined to form a unique sensory sys-
tem for motion parameters tracking based on wearable
sensory data only.
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